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ABSTRACT 

 
 

The traditional unsupervised loss function like mean square error(MSE)calculates the 

distance between the predicted value and the original input. However, it is difficult to 

guarantee the effectiveness of the features only by optimizing there construction error.In order 

to make the learned features more effective for classification tasks, we optimize the 

contrastive loss function to make the features fromdifferent views of the same sample 

consistent. This makes the features of the same classaggregate with each other, and the 

features of different classes are far away from eachother. Therefore, the features obtained by 

optimizing the contrastive loss function ofdifferent views could effectively improve the 

classification accuracy. We use a deepCNN as the base feature extractor.We call this 

proposed method deep multiview learning. Therefore, the proposed method belongs to the 

category of unsupervised learning, which could alleviate the lack of labeled training samples. 

Finally, a conventional machine learning method(e.g.,supportvectormachine)is used to 

complete the classification task in the learned latent space. To demonstrate the effectiveness 

of theproposed method, extensive experiments are carried on four widely used 

hyperspectraldata sets. The experimental results demonstrate that the proposed method could 

improvethe classificationaccuracywith smallsamples. 
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  CHAPTER1 

INTRODUCTION 

 
1.1 GENERAL 

 
RemotesensingisthescienceofacquiringinformationabouttheEarth'ssurface without actually 

being in contact with it. This is done by sensing and 

recordingreflectedoremittedenergyandprocessing,analysing,and applyingthatinformation.Remote 

sensing is based on the measurement of reflected or emitted radiation from differentbodies. Objects 

having different surface features reflect or absorb the sun's radiation indifferent ways. The reflectance 

properties of an object depend on the particular material andits physical and chemical state (e.g. 

moisture), the surface roughness as well as thegeometriccircumstances (e.g. incidence angle of the 

sunlight). The mostimportant surface features arecolour, structure and surface texture. These differences 

make it possible to identify differentearth surface features or materials by analysing their spectral 

reflectance patterns or spectralsignatures. These signatures can be visualized in so called spectral 

reflectance curves as afunctionofwavelength. 

 

The primary prerequisite for remote sensing is to have an energy source to lightup the 

target (unless the sensed energy is being radiated by the target). This energy is knownas 

electromagnetic radiation. All electromagneticradiation has key properties and carries 

oninunsurprisingroutesasindicated bythe fundamentalsofwavehypothesis. 

The electromagnetic spectrem ranges from the shorter wave lengths(includinggamma X-

ray ) to the more extended wave lengths(includingmicrowaves and telecast radiowaves). There are few 

areas of the electromagnetic range which are helpful for remotesensing. Ultraviolet or UV portion of the 

spectrum has the shortest wavelength that can beusedforremotesensingformostpurposes. 

 

This radiation extends beyond thevioletportion of the visible wavelengths and is thereforecalled. Some 

earth surface materials, essentially shakes and minerals, fluoresce or radiate certainlight 

whenlitupbyultravioletradiation.ElectromagneticwavesutilizedasapartofremotesensingisdemonstratedinF

igure.1.1. 
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Figure1.1Electromagneticspectrum 

 

Inremotesensing,theprocessinvolvesaninteractionbetween incidentradiation and the targets 

of interest. This is exemplified by the use ofimaging systemswhere the following seven elements are 

involved.[1] Note, however that remote sensing 

alsoinvolvesthesensingofemittedenergyandtheuseofnon-imagingsensors. 

 

 

 
Figure1.2RemoteSensingSystem 
 

 

Energy Source or Illumination (A) - the first requirement for remote sensingis to havean energy 

source which illuminates or provides electromagneticenergy to the target ofinterest. 

 

Radiation and the Atmosphere (B) - as the energy travels from its source to the 

target,itwillcomeincontactwithandinteractwiththeatmosphereitpassesthrough.Thisinteractionmaytakeplac

easecondtime asthe energytravelsfromthetargettothesensor. 

 

Interaction with the Target (C) - once the energy makes itsway to the target throughthe 

atmosphere, it interacts with the target depending on the propertiesof both the target andtheradiation. 

 

Recording of Energy by the Sensor (D) - after the energy has been scattered by, oremitted from 
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the target,asensorisrequired to collectand record theelectromagneticradiation. 

 

Transmission, Reception, and Processing (E) - the energy recorded by the 

sensorhastobetransmitted,ofteninelectronicform,toareceivingandprocessing station 

wherethedataareprocessedintoanimage(hardcopyand/ordigital). 

 
Interpretation andAnalysis(F)-theprocessedimageisinterpreted,visually 

and/ordigitallyorelectronically,toextractinformationaboutthetargetwhichwas illuminated. 

 
Application (G) - the final element of the remote sensing process is achieved when theinformation is 

able to extract from the imagery about the target in order to better 

understandit,revealsomenewinformation,orassistinsolvingaparticularproblem. 

 

1.2 TypesofRemoteSensing 

 

The sun is a source of energy or radiation, which provides a very convenientsource of 

energy for remote sensing. The sun's energy is either reflected, as it is for visiblewavelengths, or 

absorbed and then reemitted, as it is for thermal infrared wavelengths. Theremote sensing system can be 

classified into two types depending on the source of 

energy:passiveremotesensingandactiveremotesensing. 

 

 

 

 
 

(a) (b) 

Figure1.3a)PassiveRemoteSensing b)ActiveRemoteSensing 

 

 
Passive Remote Sensing: Passive sensors can only be used to detect energywhen the 

naturally occurring energy is available. For all reflected energy, this can only takeplace during the time 

when the sun is illuminating the Earth. There is no reflected energyavailablefromthesun 

atnight.Energythatisnaturallyemitted(suchasthermalinfrared)canbe detected day or night, as long as the 

amount of energy is large enough to be recorded.Examples of passive remote sensors include film 

photography, infrared, and radiometers.PassiveremotesensingisillustratedinFigure1.3a. 

 

Active Remote Sensing: Active sensors, on the other hand, providetheir ownenergy 

source for illumination. The sensor emits radiation which isdirected toward thetarget to be investigated. 

The radiation reflected from thattarget is detected and measuredby the sensor. Advantages of active 
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sensors include the ability to obtain measurementsanytime, regardless of the time of day or season. 

Active sensors can be used for examiningwavelengths that are not sufficiently provided by the sun, such 

as microwaves, or to bettercontrol the way a target is illuminated. However, active systems require the 

generationof afairly large amount of energy to adequately illuminate targets.[2] Examples of active 

sensorsare laserfluoro sensorand SyntheticAperture Radar (SAR).Active remote sensing 

isillustratedinFigure1.3.b 

 

 

1.3 TypesofOpticalRemoteSensingSystems 
 

Dependingonthenumberofspectral  

bandsusedintheimagingprocess,opticalremotesensingsystemsareclassifiedintothefollowingtypes: 

 

(1) Panchromatic image: The sensor is a single channel radiation 

sensitivedetectorwithin awide range ofwavelengths.If the wavelength range coincide with thevisible 

range, then the resulting image resembles a black-and-white photograph taken fromspace. The physical 

quantity being measured isthe apparent brightness of the targets. Thespectralinformationor colour 

ofthetargetsislost 

 
(2) Multispectral image: The sensor is a multichannel detector witha 

fewspectral bands. Each channel is sensitive to radiation within a narrow wavelength band. 

Theresultingimage isamultilayerimagewhichcontainsboththe 

brightnessandspectral(colour)informationofthetargetsbeingobserved 

 

(3) SuperspectralImage:Ithasmanymorespectralchannels(typically 

>10)thanamultispectralsensor.Thebandshavenarrowerbandwidths,enablingthefinerspectralcharacteristics

of thetargetstobecapturedbythesensor. 

 

(4) Hyperspectral Image: A Hyperspectral image consists of hundred 

ormore contiguous spectral bands forming a three-dimensional (two spatial dimensions andonespectral 

dimension)imagecube. 

 

(5) Ultraspectral Image: It contains thousands of spectral bands offering 

thecapabilitytoextendspectral imagingtoahighlevel. 

 

 
1.3.1 AdvantagesofRemoteSensing 

 

Themajoradvantagesofremotesensingare: 

 

1. Synoptic view: Remote sensing process facilitates the study of Earth's variousfeatures in their spatial 

relation to each other and helps to trace the requiredfeaturesandcircumstance. 

2. Accessibility:Remotesensingprocessmakesitpossibletoaccumulateinformation about the unreachable 

area when it is not possible doing groundsurveylike inmountainousregions. 
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3. Time: The information areas or foreign lands about a large area can be 

gatheredquickly,thetechniquessavetimeandefforts ofhumanbeings/machine. 

4. Costsavings:Thecostsarerelativelysmallwhencomparedwith 

thebenefits,whichcanbeobtainedfrominterpretationofsatelliteimagery. 

 

5. Coverage: With the use of high-altitude sensor platforms, it is now possible torecord extensive areas on 

a single image. The advent of high-flying aircraft 

andsatellites,singlehighqualityimagecoversthousandsof squaremiles. 

 

1.4 LimitationsofRemoteSensing 

 
Thedisadvantagesofremotesensingare: 

 

 Requirescrossverificationwithground(field)surveydata 

 Dataanalysisandinterpretationproblems 

 Costofdatacollectionanddatapurchase. 

 Possibilitiesformisclassificationorconfuseofobjects 

 Potentiallimitationswiththedifferentsensors’spatial,spectralandtemporalresolutions. 

 
 

1.4.1 ApplicationsofRemoteSensing 

 

Satellite data enables our renewable and non-renewable resources tobe properlymanaged 

as it provides timely and detailed Earth surface information. Remote sensing 

findsapplicationsinthefollowingfields. 

 

 UrbanPlanning 

 Geographicinformation 

 Weatherandagriculturalforecastsandassessmentofenvironmentandnaturaldisaster 

 Imageprocessing 

 Aerialtrafficcontrol,Interferometricsyntheticapertureradar 

 LaserandRadaraltimeters 

 Precisiongeo-referencing 

 Ultrasound(acoustic)andradartidegauges 

 Light detectionandranging 

 Radiometers andphotometers 

 Stereographicpairsofaerialphotographs 

 Mineralogy,Biology,Defense,andEnvironmentalmeasurements 
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1.4.2 Hyperspectralimaging 

 
The word “hyper” in hyperspectral means “over” as in “too many” and refers to the 

largenumberofmeasuredwavelengthbands.Hyperspectralimagesarespectrallyoverdetermined; they 

provide ample spectral information to identify and distinguish betweenspectrally similar (but unique) 

materials. Consequently, hyperspectral imagery provides thepotential formore accurate and detailed 

information extraction than is possible with other typesof remotely sensed data. A Hyperspectral Image 

(HSI), in general, has hundreds of spectralbands in contrast to a normal digital image which has three 

spectral bands (blue, red, andgreen) and thus offers a more complete part of the light spectrum 

forviewing and analysis.In general, hyperspectral sensors measure bands at 10 to 20 nm intervals. A 

regular digitalimage can be viewed as a collection of three-dimensional spectral vectors, each 

representingtheinformationforonepixel.Similarly,aHSIcanbeviewedasacollectionofd-

dimensionalspectral vectors,eachrepresentingthe informationforonepixel. 

 

Hyperspectral remote sensing images acquire many, very narrow, contiguousspectral bands 

throughout the visible,near–infrared,mid-infrared and thermal infraredpositions of the electromagnetic 

spectrum. Hyperspectral sensors typically collect 200 ormore bandsenabling the construction of an 

almost continuous reflectance spectrum forevery pixel in the scene. Contiguous narrow bandwidths 

characteristic of hyperspectral dataallows for in-depth examination of earth surface features which 

would otherwise be 'lost'within the relatively coarse bandwidths acquired with multispectral 

scanners.[3] Over thepastdecade,extensiveresearchanddevelopmenthasbeencarriedout 

inthefieldofhyperspectralremote sensing.With commercialairbornehyperspectralimagerssuch asCompact 

Airborne Spectrographic Imager (CASI) and Hymap and the launch of satellite-based sensors such as 

Hyperion HSI is fast moving into the mainstream of remote 

sensingandappliedremotesensingresearchstudies.Hyperspectralimageshavefoundmanyapplications in 

water resource management, agriculture, and environmental monitoring. It isimportant to remember that 

there is not necessarily a difference in spatial resolution betweenhyperspectralandmultispectraldata 

butratherintheirspectralresolutions. 

 

 

 

Hyperspectral images typically include spectral bands representing the ultraviolet (200-

400nm),visible(400-700nm),nearinfrared (700-1000 nm), and short-wave infrared (1000-4000 nm). 

Thus, HSI are favouredoverregularimagesforsome applicationssuchasforestry and crop analysis, mineral 

exploration, and surveillance. Hyperspectral image cubestructure is illustrated in Figure 1.4. Each pixel 

has intensity values corresponding to allspectralbandsasshowninFigure1.5. 
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Figure1.4RepresentationofHyperspectralDataCube 
 

 

Figure 1.5 Concept of data cube generated by a Hyperspectral 

imagerAnalyzingofHyperspectraldatabecomesadifficulttask.Importantfactorsaremakingittoocomplexsuch

asatmosphericcorrections,hugesizeandlargevolumeoftheimage,curseof 

dimensionality,spatial/spectralsignaturesvariability,fewlabelledsamples,exploringthespatialcorrelationa

mongpixelsandaddingcontextualinformationalongwithspectralinformationduringclassification. 

 

GeneralprocessingofHyperspectraldatainvolvesthefollowingsteps: 
 

• Datapre-processing 

• Correctionsofdatabyusingatmosphericcorrection 

• Dimensionalityreduction 

• Pureend-memberselectionusingpixels 

• Perform classification using selectedend-membersHyperspectral 

imagingiscommonlyreferredtoasspectralimaging 

or spectral analysis.The distinction between hyper- and multi-spectral is sometimes basedon an arbitrary 

"number of bands" or on the type of measurement, depending on what isappropriatetothepurpose. 
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Multispectralimaging dealswith severalimagesatdiscrete andsomewhatnarrow bands. Being 

"discrete and somewhat narrow" is whatdistinguishes multispectral inthe visible from colour 

photography. A multispectral sensor may have many bands coveringthespectrum from 

thevisibletothelongwaveinfrared.Multispectralimagesdonotproduce the "spectrum"of 

anobject.Landsatisan excellentexample ofmultispectralimaging. 

 

HyperspectralImageSensors 

 
Hyperspectralandmultispectralsensorsarebasedonthesame physicaltechnology. They both 

record radiance in the Visible to Near-Infrared (VNIR) and Short-Wave Infrared (SWIR) of the 

spectrum, VNIR spanning 400–1000 nm and SWIR 1000–2400 nm. Unlike multispectral sensors, such 

asLandsat-8 (11 bands), recording in a fairlylimitednumberofdiscretespectral 

bands (4–20 bands), Hyperspectral sensors include a very large number of contiguous andnarrow 

spectral bands of 5–15 nm (Kaufmann et al. 2009). Airborne Hyperspectral sensorsprovide promising 

results for many applications as they combine a high spectral resolutionwith a high spatial resolution 

and are not so affected by atmospheric perturbation (Lu et al.2013; Wang et al. 2010). These platforms 

have played a key role in the development ofHyperspectral   science   and   applications   (Kruse   et   

al.   2003; Guanter et al. 

2012).WiththeavailabilityofemblematicsensorssuchasHyMAP,CASI,AirborneVisible/InfraRed Imaging 

Spectrometer (AVIRIS) , Digital Airborne Imaging 

Spectrometer(DAIS),ReflectiveOpticsSystemImagingSpectrometer(ROSIS),AirborneImaging 

SpectrometerforApplications(AISA),HyperspectralDigitalImageryCollectionExperiment (HYDICE), 

Multispectral Infrared Visible Imaging Spectrometer (MIVIS), 

etc.,HyperspectralresearchquicklyexpandedthenumberofHyperspectralapplicationsinvegetation 

monitoring, water resources management, geology and land cover (Govender etal. 2007; Van der et al. 

2012). However, they do not allow regular and synoptic coveragesover large areas as 

spacebornesensors. Moreover, spaceborne sensors produce images withlower angular effects due to 

their much smaller field of view. Fig.1.6 illustrates the timelineof high-spatial-resolution (≤ 30 m) 

hyperspectral sensors. These hyperspectral sensors havebeen implemented on a number of experimental 

airborne platforms, including the HYDICEandtheAVIRIS.EarthObservation-1(EO- 

1)carriesahyperspectralsensorcalledHyperion. 

 

 

 

 

Figure1.6TimelinehighlightinghyperspectralImagingSensors 
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Table1.1DetailsofHyperspectralSensors 
 

 

Type 
ofSensors 

 

NameoftheSensors 

 

No.ofbands 

 

SpectralRange(μm) 

 

SatelliteS
ensor 

 

FTHSIonMightySatII 
 

256 
 

0.35 to1.05 

HyperiononEO-1 242 0.40 to2.50 

 

 

 

 

 

 

 

 

 

 

 

 

 
AirborneSens
or 

 

AVIRIS (AirborneVisible 
 

224 
 

0.40 to2.50 
InfraredImaging 

Spectrometer) 

HYDICE (Hyperspectral 210 0.40 to2.50 
DigitalImageryCollection 

Experiment) 

 

PROBE-1 
 

128 
 

0.40 to2.50 

CASI(Compact Airborne Over228 0.40 to1.00 
SpectrographicImager) 

 

HyMap 

 

100to200 
 

VisibletoThermal 

Infrared 

  

VIS/NIR(76) 
 

VIS/NIR(0.43to1.05) 

 

EPS-H(Environmental 
SWIR1(32) SWIR1(1.50to1.80) 

ProtectionSystem) SWIR2(32) SWIR2(2.00to2.50) 

 TIR (12) TIR (8.00to12.50) 

 VIS/NIR(32) VIS/NIR(0.43 to1.05) 

DAIS 7915(Digital SWIR1(8) SWIR1(1.50to1.80) 

AirborneImaging SWIR2(32) SWIR2(2.00to2.50) 

Spectrometer) MIR(1) MIR(3.00to5.00) 

 TIR(6) TIR(8.70to12.30) 

(AISA)AirborneImaging  

Over288 
 

0.43-1.00 
Spectrometer for 

Applications 

 

 
The sensors are typically measured in spectral resolution, which is the width ofeach band 

of the spectrum that is captured. If the scanner detects a large number of fairlynarrow frequency bands, 

it is possible to identify objectseven if they are only captured in 

ahandfulofpixels.Inthehyperspectralfieldtherearetwotypesofsystemsthattakeimages: 

onaircraftandonsatellites.Mosthyperspectralsensorsaremountedonaerialplatformsthanonthesatellite. 
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1.5 HYPERSPECTRALIMAGECLASSIFICATION 
 

Hyperspectral image classification is the process in which individual values(objects/ 

patterns/image regions/pixels) are grouped based on the similarity between thevalue and the description 

of the group. Hyperspectral image classification can be done byeither based on pixel information or 

based on the use of training samples. Based on pixelinformation, images can be classified as Per-Pixel, 

Sub Pixel, Per-field, Knowledge based,Contextual and multiple Classifiers. Based on the use of training 

samples, images can 

beclassifiedasSupervisedClassification,UnsupervisedClassificationandSemisupervisedClassification. 

Hyperspectral image classification is based on the detection of the spectralresponse pattern of land 

coverclasses. The majorobjective of the image classificationprocedure is to automatically categorize all 

pixels in the image into appropriate land coverclasses.The intent of the classification process is to 

categorize all pixels in an image intoone of several land coverclasses or"themes".[4] This categorized 

data is then used toproduce thematic maps of the land cover present in an image. One of the major 

problemsinHyperspectral remote sensing is a high amount of data that is available forprocessing. Dueto 

the huge amountof data, the processing time and classification accuracy are decreased.To deal with this 

huge data problem, the valuable information and more processing arerequired to increase the 

classification accuracy. Therefore, classification of HSI data 

withoutlosingimportantinformationaboutobjectsofinterestisimportant. 

 
1.6 DEEPLEARNINGINREMOTESENSING 

 

Deep Learning (DL) is a type of machine learning in which a model learns toperform 

classification tasks directly from images, text, or sound. DL is usually implementedusing a neural 

network architecture. The term “deep” refers to the number of layers in thenetwork—the more layers, 

the deeper the network. Traditional neural networks contain only2or3layers,while 

deepnetworkscanhavehundreds. 

 

In recent years, DL has become emerging learning method in big data analysisand hasbeen 

extensively used in numerousfields, such as natural language processing(Ronan & Weston, 2008), 

image classification, speech enhancement, due to its exceptionalperformance 

comparedtootherconventionallearningalgorithms. 

Recent advances in Artificial Intelligence (AI) and machine learning, 

especiallytheemergingfieldofdeeplearning,havechangedtheway weprocess,analyseandmanipulate 

geospatial sensor data. This is largely driven by the wave of excitement in deepmachine learning, as a 

new frontier of AI, where the most representative and discriminativefeatures are learnt end- to-

end,hierarchically.[5] DL methodshave achieved huge successnot only in classical computer vision 

tasks, such as target detection, visual recognition, androbotics, but also in many other practical 

applications (Hu et al. 2015). They have madeconsiderable improvements beyond the state-of-the-art 

records in avariety of domains, andhaveattractedgreatinterestinbothacademiaandindustrialcommunities 

 

DL offers a different outlook on feature learning and representations, where robust, abstractand 

invariant features are learnt end-to-end, hierarchically, from raw data (e.g. image 

pixels)tosemanticlabels, which isakeyadvantageincomparisonwithpreviousstate-of-the-
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artmethods.Manydeep learning-based methods have been proposed, including deep belief networks 

(DBNs) (Chen et 

al.2015),deepBoltzmannmachines(DBMs),StackedAutoencoder(SDE),anddeepconvolutional neural 

networks. Amongst them, the CNN model represents the most well-established method, with impressive 

performance and great success in the field of computervisionand pattern recognition, such as for visual 

recognition (Krizhevsky et al. 2012),imageretrievalandsceneannotation. 

 
1.6.1DeepLearningforHSIClassification 

 

Classification is the task of labelling pixels (or regions in an image)into one ofseveral 

classes. The DL methods outlined as follows use many forms of DL to learn featuresfromthe dataitself 

andperformclassificationatstate-of-the-artlevels. 

 

As DLhas emerged as one of the well-known machine learning techniques,itis widely used 

in the field of computer vision and image processing, with applications suchas image classification (He 

et al.2014; Krizhevsky et al. 2012), object detection (Girshick etal. 2014), and super- resolution 

restoration (Dong et al. 2016). In recent past, DL is used forremotesensing image classification, and a 

good number of relative papers are discuss it theliterature .As a part of this survey , in this section , it is 

presented the pixel-wise and scenewise remote sensing image classification approaches that are based 

on DL, supported withcomparativeexperimentalanalyses. 

HSIdataclassificationisofmajorimportancetoRSapplications,somanyoftheDL results 

reviewed were based on HSI classification. HSIprocessing has many challenges,including 

highdatadimensionalityandusuallylownumbersoftrainingsamples.Chenet based HSI classification 

framework. The input data are converted to a one- dimensional (1-D) vector and processed via a DBN 

with three RBM layers, andthe class labels are outputfrom a two-layer logistic regression NN. A spatial 

classifier using Principal ComponentAnalysis (PCA) on the spectral dimensionfollowed by 1-D 

flattening of a 3-D box, a three-levelDBN,andtwo-

levellogisticregressionclassifier.Athirdarchitectureusescombinations of the 1-Dspectrum and the spatial 

classifier architecture.[6] He et al. (2016)developed aDBN forHSI classification thatdoes notrequire 

SGD training.Nonlinearlayers in the DBN allow for the nonlinear nature of HSI data and a logistic 

regressionclassifier is used to classify the outputs of the DBN layers. A parametric depth study 

showeddepth of nine layers produced the best results of depths from 1 to 15, and after a depth 

ofnine,noimprovementresultedby addingmore layers. 

 

Some of the HSI DL approaches use both spectral and spatial which integratesspatial 

information. Small training sets are mitigated by acollaborative, representation-basedclassifierandsalt-

and-peppernoiseismitigatedbyagraph-cut-basedspatialregularization. Their method is more efficient than 

comparable kernel-based methods, andthe collaborative representation-based classification makes their 

system relatively robust tosmall training sets. Yang et al. (2016) use a two-channel CNN to jointly learn 

spectral andspatial features. Transfer learning is used when the number of training samples is 

limited,where low-level and midlevel features are transferred from other scenes. The network has 

aspectral CNN and spatial CNN, and the results are combined in three fully connected layers.A softmax 

classifier produces the final class labels. Pan et al. (2017) proposed the so- calledrolling guidance filter 

and vertex component analysis network (R-VCANet), which alsoattempts to solve the common problem 
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of lack of HSItraining data. The network combinesspectralandspatialinformation.The smalldetailsfrom 

imagery .theVCANetisacombination of vertex component rolling guidance filter is an edge-preserving 

filter used toremove noise and analysis, which is used to extract pure endmembers, and PCANet. 

Aparameteranalysis of the number of training samples, rolling times, and the number and sizeof the 

convolution kernels is discussed. The system performs well even when the trainingratio is only 4%. Lee 

& Kwon (2016) designed a contextual deep fully convolutional DLnetwork with 14 layers that jointly 

exploit spatial and HSI spectral features. Variable sizeconvolutional features are used to create a 

spectral–spatial feature map. A feature of thearchitecture is the initial layers use both [3 × 3 × B] 

convolutional masks to learn spatialfeatures, and [1 × 1 × B] for spectral features, where B is the 

number of spectral bands. Thesystemistrainedwithaverysmallnumberoftrainingsamples(200/class). 

Objectiveoftheresearch 
 

Themainobjectivesoftheresearchareto: 

 Developdeeplearningtechniquesforthe analysisand classificationofremotesensingHyperspectralimages. 

 Investigate the behaviorand performance,in termsofoverallaccuracy,average accuracy and kappa 

coefficient of the newly developed techniqueswithstandardhyperspectral data sets. 

 Produce accurate classification maps that are suitable to meet 

thepracticalrequirementsfortheapplicationsofinterest. 

 

 

 
Motivationoftheresarch 

 
HSI classification plays an important role in the earth observation technologyusing data 

from Remote Sensing (RS), which has been extensivelyused in both military 

andcivilfields.However,RSimageclassificationperformancefacesmajorscientificandpractical challenges 

due to the characteristicsofRSdatasuchashighdimensionalityandrelativelysmall 

quantities of available labelled samples.In recent years, as new DL techniques emerge,approaches to RS 

image classification with DL have achieved significant breakthroughs,offering novel opportunities in 

classification. Specifically, focus is on unsolved challengesandopportunitiesastheyrelateto 

(i)inadequatedatasets,(ii)human-understandablesolutionsformodellingphysicalphenomena,(iii)big 

data,(iv)transferlearning,(v)DL architecturesand learningalgorithms for spectral, spatial, and temporal 

data, (vi) non- traditional heterogeneousdata sources,(vii) betterunderstanding of DL 

systemstheoretically (viii)high barrierstoentry,and(ix)trainingandoptimizingtheDL. 

Problemdefinition 

 
Hyperspectral classification becomes a difficult task because of high dimensionality, fewlabelled 

samples, spatial variability of the spectral signature, spatial correlation among pixels andaddition of 

contextual information with spectral information during classification. It uses distinctfeatures like 

spectral ,spatial multi temporal and multi sensor information.important factors inclassification accuracy 

are uncertainty and error propagation chain.[6] For achieving 

significantimprovementinaccuracy,weakest 

linksinthechainneedstobeidentifiedandthentheuncertaintiesarereduced. 
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Based on the literature survey, it is inferred that still there is a scopefor 

newHyperspectralImageClassificationAlgorithmindeeplearningareato 

improvetheclassificationaccuracy.Thustheproblemidentifiedforthisresearchworkisimprovementin 

Hyperspectral Image Classification with respect to overall accuracy,average 

accuracyandkappacoefficient. 

HyperspectralImageClassificationAlgorithmusingMultiscaleConvolu

tionalNeuralNetwork 

In thiswork,a novel hyperspectral image classification system that usesaMultiscale 

Convolutional Neural Network with Gaussian Kernel (MCNN-GK) has 

beenhighlighted.AlthoughCNNshavesuccessfullybeenusedinremotesensingsceneclassification, the scale 

of the objects can changegreatly between images. When the scale ofthe image changes a lot within the 

dataset, it is very difficult to achieve a good classificationof remote sensing data. To solve this problem, 

a novel MCNN framework with Gaussianconvolution kernel function has been proposed as it is the 

only correct kernel function toapproximatescalespace. 

 

In MCNN structure, three fully connected layers are added in frontof theoutput layer, 

which have been abandoned in many current CNN structures. The weights ofconvolution layer are 

initialized as Gaussian convolution kernels. The Gaussian smoothinglayer adjusts the size of the scaleby 

training, so that the entire learning process is carried outin a stable scale space. Different learning rates 

are employed in each octave in the trainingprogress and adjusted according to the change of the scales. 

In the training process of thetraditional CNNs, the weights in the front hidden layers are moredifficult to 

train than that inthe hidden layers behind it. Hence, a larger learning rate is used on the small scale 

fronthidden layer, and a smaller learning rate corresponding to the large scale hidden layer. Fortraining, 

as in CNN, the loss function is chosen as cross-entropy, and mini-batch gradientdescentisused 

tofindthebestparametersofthenetwork.Traininganeuralnetworkistofindthe bestparameters(weightsof the 

network) to minimize the lossfunction,which in aclassification task measures the compatibility between 

a prediction (e.g., the class scores inclassification) and the ground truth label.the experiments show that 

the propose methodoutperforms intermsofoverallaccuracyaverageaccuracyandkappacofficient 

DATASETS 

 

The various benchmark data sets of HSI are generally utilized for assessing the performance of theproposed 

methods for diverse fields ofapplication. The data set include Indian Pines, Pavia University,Pavia 

Center,Kennedy Space Center, Botswana, Salinas, Salinas-A and Washington images. In this work,the 

experimental results are exposed on three hyperspectral airborne images recorded by the 

AVIRISandtheROSISsensors,withdifferentcontexts(agricultural andurbanareas),differentspatialresolutions 

Thesethreedatasetsaredetailedinthefollowing: 

 
Indian Pines: It was acquired by the AVIRIS sensor in Indiana in June 1992. It isthe 

firstdatasetwith 20-m resolution image taken overthe Indian Pines testsite in June 1992.The image size 

is 145 × 145 pixels and contains 220 spectral bands. Twenty water absorptionbands have been removed 

(Tadjudin& Landgrebe,1999), and a 200-band image was used for theexperiments. It contains two-

thirds agriculture, and one-third forest are the rnatural perennialvegetation. A ground survey of 10366 
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pixels, distributed in16 crop types classes, is available.[10]Thisdatasetis a classical benchmark 

tovalidate model accuracy and isknown to be verychallenging because of the strong mixture of the 

classes’ signatures, since the image has beenacquiredshortlyafterthecropswereplanted. 

Pavia University: The Pavia University image was collected by the Reflective 

OpticsSystem Imaging Spectrometer(ROSIS)senso rove rthe urban areaof the University of Pavia,Italy. 

It consists of 103 spectral bands with aspectral range from 430 nm to 860 nm. The imagespatial 

resolution is1.3m,and the total image size is610 X 340 pixels.The reference 

datacontainnineclassesofinterest. 

 
Salinas:The Salin as image was acquired via the Airborne Visible/Infrared 

ImagingSpectrometer(AVIRIS)overSalinasValley,California,andtheimagesizeis512X217,withthespatial

resolutionof3.7mItcontains224spectralbands.LiketheIndianPinesscene,the20waterabsorption bandswere 

discarded and there maining 204 bands were utilized for the 

experiments.ThegroundreferencedatafortheSalinasimageentails16classes.Itincludesvegetables,baresoils,

andvineyardfields. 

 

                                                        CHAPTER 3 

                                                      METHODOLOGY 

 
3.1 ClassifyHyperspectralImagesUsingDeepLearning: 

Hyperspectral image classification is the process in which individual values(objects/ 

patterns/image regions/pixels) are grouped based on the similarity between thevalue and the description 

of the group. Hyperspectral image classification can be done byeither based on pixel information or 

based on the use of training samples. Based on pixelinformation, images can be classified as Per-Pixel, 

Sub Pixel, Per-field, Knowledge based,Contextual and multiple Classifiers. Based on the use of training 

samples, images can 

beclassifiedasSupervisedClassification,UnsupervisedClassificationandSemisupervisedClassification. 

Hyperspectral image classification is based on the detection of the spectralresponse pattern of land 

coverclasses. The majorobjective of the image classificationprocedure is to automatically categorize all 

pixels in the image into appropriate land coverclasses.The intent of the classification process is to 

categorize all pixels in an image intoone of several land cover classes or "themes". This categorized 

data is then used to 

producethematicmapsofthelandcoverpresentinanimage.OneofthemajorproblemsinHyperspectral remote 

sensing is a high amount of data that is available for processing. Dueto the huge amount of data, the 

processing time and classification accuracy are decreased.[7]To deal with this huge data problem, the 

valuable information and more processing arerequired to increase the classification accuracy. Therefore, 

classification of HSI data withoutlosingimportantinformationaboutobjectsofinterestisimportant. 

 
Hyperspectralimagingmeasuresthespatialandspectralfeaturesofanobjectatdifferentwavelengths ranging 

from ultraviolet through long infrared, including the visible spectrum. Unlike colorimaging, which uses only 

three types of sensors sensitive to the red, green, and blue portions of 

thevisiblespectrum,hyperspectralimagescanincludedozensorhundredsofchannels.Therefore,hyperspectralimages 
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can enablethedifferentiation ofobjectsthatappearidenticalinanRGBimage. 

Load HyperspectralData Set: 

ThisexampleusestheIndianPinesdataset,includedwiththeImageProcessingToolbox™Hyperspectral Imaging 

Library. The data set consists of a single hyperspectral image of size 145-by-145pixels with 220 color 

channels. The data set also contains a ground truth label image with 16 classes,suchasAlfalfa,Corn,Grass-

pasture,Grass-trees,andStone-Steel-Towers. 

 

 

 

 

PreprocessTrainingData: 

Reducethenumberofspectralbandsto30usingthehyperpcafunction.Thisfunctionperformsprincipalcomponenta

nalysis(PCA)andselectsthespectralbands withthemostuniquesignatures. 

SpecifyTrainingOptions: 

Specifytherequirednetworkparameters.Forthisexample,trainthenetworkfor100epochswithaninitiallearningrateof 

0.001,a batchsize of256,andAdamoptimization. 

TraintheNetwork: 

By default, the example downloads a pretrained classifier for the Indian Pines data set.[11] Thepretrained 

network enables you to classify the Indian Pines data set without waiting for training tocomplete. 

To sum up, the successful mapping of TSS distribution in mulberries suggested that the application 

ofhyperspectral imaging to realize the visualization of mulberry fruits’ internal quality is feasible 

andpromising. The PLSR and LS-SVM model based on 23 and 11 wavelengths had a good performance 

topredictTSSofmulberries,whichindicatedthatRFalgorithmwaseffectiveinreducingthree-dimensional data. 

PLSR-RF based on 23 important wavelengths provided the optimal visualizationresults. It could be revealed 

that PLSR was feasible to map chemical component concentration (TSS)distribution of mulberry fruits. This 

research provided a theoretical basis for developing the instrumentfor measuring the internal quality of fruits 

and made it possible to sort mulberries based on TSS spatialdistribution. 

3.2 PCAFeatures 

PCAisanimportantmethodforfeatureextractionandimagerepresentation.InPCA,matrixtransformationoftheimage 

takesplace intohighdimensionvectorsanditscovariancematrixisobtainedconsuminghigh-dimensionvectorspace. 

PCAisadimensionalityreductiontechniquethathasfourmainparts:featurecovariance,eigendecomposition, 

principal component transformation, and choosing components in terms of explainedvariance. The purpose of 

this blog is to share a visual demo that helped the students understand the finaltwosteps. 

Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets,increasing 

interpretability but at the same time minimizing information loss.[8] It does so by 

creatingnewuncorrelatedvariablesthatsuccessivelymaximize variance. 

Thefollowingrepresents6 stepsofprincipalcomponent analysis (PCA)algorithm: 

 
 

 Standardize the dataset: Standardizing / normalizing the dataset is the first step one would needto take before 

performing PCA. The PCA calculates a new projection of the given data setrepresentingone ormorefeatures. 

Thenewaxesarebasedonthestandarddeviationof the value 

of these features.So,afeature / variable with ahigh standard deviation will have ahigherweight for the 
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calculation of axis than a variable / feature with a low standard deviation. If thedata is normalized / 

standardized, the standard deviation of all fetaures / variables get measuredon the same scale. Thus, all 

variables have the same weight and PCA calculates relevant axisappropriately. Note that the data is 

standardized / normalized after creating training / test 

split.Python’ssklearn.preprocessingStandardScalerclasscanbeusedforstandardizingthedataset[12]. 

 Construct the covariance matrix: Once the data is standardized, the next step is to create n X n-

dimensionalcovariancematrix,wherenisthenumberofdimensionsinthedataset.Thecovariance matrix stores the 

pairwise covariances between the different features.Note that 

apositivecovariancebetweentwofeaturesindicatesthatthefeaturesincreaseordecreasetogether, whereas a negative 

covariance indicates that the features vary in opposite 

directions.Python‘sNumpycovmethodcanbeusedtocreatecovariance matrix. 

 PerformEigendecompositionofcovariancematrix:Thenextstepistodecomposethecovariance matrix into its 

eigenvectors and eigenvalues. The eigenvectors of the covariancematrix represent the principal components 

(the directions of maximum variance), whereas thecorresponding eigenvalues will define their magnitude. 

[8]Numpylinalg.eig or linalg.eigh can beusedfordecomposingcovariancematrixintoeigenvectorsandeigenvalues. 

 Selection ofmost important Eigenvectors / Eigenvalues: Sort the eigenvalues by decreasingorder to rank the 

corresponding eigenvectors. Select k eigenvectors, which correspond to the klargest eigenvalues, where k is the 

dimensionality of the new feature subspace (). One can 

usedtheconceptsofexplainedvariancetoselectthekmostimportanteigenvectors. 

 Projection matrix creation of important eigenvectors: Construct a projection matrix, W, from 

thetopkeigenvectors. 

 Training /testdatasettransformation: Finally,transform the d-dimensional inputtraining 

andtestdatasetusingtheprojectionmatrixtoobtainthe newk-dimensionalfeaturesubspace. 

HerearethestepsfollowedforperformingPCA: 

 

 Performone-hotencodingtotransformcategorical dataset tonumericaldataset 

 Performtraining/ test split ofthedataset 

 Standardizethetrainingandtestdataset 

 Constructcovariancematrixofthetrainingdataset 

 Constructeigendecompositionofthecovariancematrix 

 Selectthemostimportantfeaturesusingexplainedvariance 

 Construct projectmatrix;Inthecodebelow,theprojection matrix is createdusingthefiveeigenvectors that 

correspond to the top five eigenvalues (largest), to capture about 75% ofthevariance inthisdataset 

 Transformthetrainingdatasetintonewfeaturesubspace 

 
 

3.3 DeepFeaturesClassification 

CNN is a neural network that extracts input image features and another neural network classifies theimage 

features. The input image is used by the feature extraction network. The extracted feature 

signalsareutilizedbythe neuralnetworkforclassification. 

Hyperspectral imaging measures the spatial and spectral features of an object at different wavelengthsranging 

from ultraviolet through long infrared, including the visible spectrum. Unlike color imaging,which uses only 

three types of sensors sensitive to the red, green, and blue portions of the visiblespectrum, hyperspectral images 
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can include dozens or hundreds of channels. Therefore, 

hyperspectralimagescanenablethedifferentiationofobjectsthatappearidenticalinanRGBimage. 

 

LoadHyperspectralDataSet 

The data set consists of a single hyperspectral image of size 145-by-145 pixels with 220 color channels.The 

data set also contains a ground truth label image with 16 classes, such as Alfalfa, Corn, Grass-pasture,Grass-

trees,andStone-Steel-Towers. 

PreprocessTrainingData 

Reduce the number of spectral bands to 30 using the hyperpca function. This function performs 

principalcomponent analysis (PCA) and selects the spectral bands with the most unique signatures. Split 

thehyperspectral image into patchesof size 25-by-25 pixels with 30 channels using the create ImagePatches 

From Hypercube helper function.[13] This function is attached to the example as a 

supportingfile.Thefunctionalsoreturnsasinglelabelforeachpatch,whichisthelabelofthecentralpixel. 

CreateCSCNNClassificationNetwork 

DefinetheCSCNNarchitecture. 

 
 

SpecifyTrainingOptions 

Specifytherequirednetworkparameters.Forthisexample,trainthenetworkfor100epochswithaninitiallearningrateof 

0.001,a batchsize of256,andAdamoptimization. 

ClassifyHyperspectralImageUsingTrainedCSCNN 

Calculatetheaccuracyoftheclassificationforthetestdataset.Here,accuracyisthefractionofthecorrectpixelclassification

overalltheclasses. 
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3.4 ARCHITECTUREDESIGN 
 
 

 

3.5 EXISTINGSYSTEM 

The high dimensionality of hyperspectral image data and the lack of labeled samples can lead to 

theHughes phenomenon . Earlier in the research of hyperspectral image classification, people often focusedon 

spectral information, using only spectral information to achieve image classification, and developedmany 

classificationmethods,such as support vectormachine (SVM), random forest(RF), neuralnetworks , and 

Polynomial logistic regression . Dimension reduction methods such as feature 

extractionandfeatureselectionhavealsobeenproposed,suchasprincipalcomponentanalysis(PCA),independentcom

ponentanalysis(ICA),andlineardiscriminantanalysis(LDA).Theotherisanonlinear feature extraction method. For 

example, in 2000, the local linear embedding (LLE)algorithmpublished by Science of Roweis and Saul in 

Science projects local high-dimensional data points into alow-

dimensionalcoordinatesystem.Theoverallinformationisobtainedbysuperimposinglocalneighborhoods,maintainin

gthesametopologicalrelationship,andretainingtheoverallgeometricproperties. At the same time, Tenenbaum et 

al. proposed (Isometric Feature Mapping, ISOMAP)analgorithm based on the classic MDS .[9] It uses geodesic 

distance to embed high-dimensional data intolow-dimensional coordinates. The neighborhood structure 

between high-dimensional spatial data pointsis still retained in low-dimensional coordinate space. Belki and 

Niyogi proposed a similar pull to LLE in2001. Laplacian Eigenmap(LE) , also known as Spectral Clustering 
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(SC); these nonlinearfeatureextractionmethodsareusedinclassificationforpracticalapplications. 

It is worth noting that deep learninghas excellent capabilities in image processing. Especially in recentyears, 

image classification, target detection, and other fields have set off a wave of deep learning. 

Somedeeplearningnetworkmodelshavebeenusedinremotesensingimageprocessing,suchastheConvolutional 

neural network (CNN), deep belief network (DBN)and recurrent neural network (RNN).Moreover, in order to 

solve the problem of poor classification results due to the lack of training samples,a new tensor-based 

classification modelwas proposed. Experiments confirmed that this method issuperiortosupport 

vectormachinesanddeep learningwhenthenumberoftrainingsamplesis small. 

 
3.6 PROPOSEDSYSTEM 

 
The paramount challenge for HSI classification is the curse of dimensionality which is alsotermed as 

Hughes phenomenon. To confront with this difficulty, feature extraction methods are used toreduce the 

dimensionality by selecting the prominentfeatures.In unsupervised methods,the algorithmor method 

automatically groups pixels with similar spectral characteristics (means, standard deviations,etc.)intounique 

clustersaccordingtosome statisticallydeterminedcriteria.Further,unsupervisedclassification methods do not 

require any prior knowledge to train the data. The familiar unsupervisedmethods 

areprincipalcomponentanalysis(PCA)andindependentcomponentanalysis (ICA). 

Principalcomponentanalysis 

It is the most widely used technique for dimensionality reduction. In comparative sense, appreciablereduction 

in the number of variables is possible while retaining most of the information contained by theoriginal dataset. 

The substantial correlation between the hyperspectral bands is the basis for PCA. Theanalysis attempts to 

eliminate the correlation between the bands and further determines the 

optimumlinearcombinationoftheoriginalbandsaccountingforthevariationofpixelvaluesinanimage. 

CHAPTER 4 

EXPERIMENTALRESULTS 

Implementation of a software package refers to the installation of the package in its 

realenvironmenttothefullsatisfactionoftheusersandoperatingsystem.Inshort,implementationconstitutes all 

activities that are required to put an already tested and completed package into 

operation.Thesuccessofanyinformationsystemliesinitssuccessfulimplementation. 

4.1 DATASETS 

 
The various benchmark data sets of HSI are generally utilized for assessing the performance 

oftheproposedmethodsfordiversefieldsofapplication.ThedatasetincludeIndianPines,PaviaUniversity, Pavia 

Center ,Kennedy Space Center, Botswana, Salinas, Salinas-Aand Washington images.In this work, the 

experimental results are exposed on three hyper spectral air borne images recorded bythe AVIRIS and the 

ROSIS sensors, with different contexts (agricultural and urban areas), differentspatialresolutions. 

 

4.2 FunctionalDocumentation 

 
Functional Documentation plays a vital role in describing thevarious functionalitiesofthe 

project. Basically, it considers the various forms designed for the project and explains variousfunctions 

associated with the form. As a matter of fact, each form is an integrated part of the project andhas its 
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own,intendedfunctionality.Often,aformmayberelatedto otherforms intheprojecttoo. 

 

In this section, I explain the functional documentation of the project. It considers various blocks of 

themodulesandtheassociatedforms. 

 

Experiment on Indian Pines dataset : The Indian Pines dataset was gathered by AVIRIS 

(AirborneVisible/Infrared Imaging Spectrometer) sensor over the Indian Pines test site in North-western 

Indiana in1992. The Indian Pines (IP) dataset has images with 145 × 145 spatial dimension and 224 spectral 

bandsandthegroundtruth availableisdesignatedinto16classesofvegetation.Theexperimentswereconducted on the 

Indian Pinesdataset with differentnumbers of training and testing samples.Someother experiments we 

performed involved observing the effects of different spatial window sizes and theeffects of number of PCA 

components. We found 30 to be the optimal number of PCA components forthis particular dataset. It is also 

observed that the proposed method outperforms most of the state-of-the-artmethods. 
 

 
 
 

 

Figure4.1TheClassificationMapforIndianPines 

http://www.ijcrt.org/


www.ijcrt.org                                         © 2022 IJCRT | Volume 10, Issue 9 September 2022 | ISSN: 2320-2882 

IJCRT2209318 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c564 
 

 

Figure4.2TheClassificationMap forPaviaUniversity 

 

 
 
 

 

Figure4.1TheClassificationMap forSalinasScene 
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Thesethreedatasetsaredetailedinthefollowing: 

 
Indian Pines: It was acquired by the AVIRIS sensor in Indiana in June 1992. It isthe 

firstdatasetwith 20-m resolution image taken overthe Indian Pines testsite in June 1992.The image size 

is 145 × 145 pixels and contains 220 spectral bands. Twenty water absorptionbands have been removed 

(Tadjudin& Landgrebe,1999), and a 200-band image was used for theexperiments. It contains two-

thirds agriculture, and one-third forest are the rnatural perennialvegetation. A ground survey of 10366 

pixels, distributed in16 crop types classes, is available.[10]Thisdatasetis a classical benchmark 

tovalidate model accuracy and isknown to be verychallenging because of the strong mixture of the 

classes’ signatures, since the image has beenacquiredshortlyafterthecropswereplanted. 

Pavia University: The Pavia University image was collected by the Reflective OpticsSystem 

Imaging Spectrometer(ROSIS)senso rove rthe urban areaof the University of Pavia,Italy. It consists of 

103 spectral bands with aspectral range from 430 nm to 860 nm. The imagespatial resolution 

is1.3m,and the total image size is610 X 340 pixels.The reference datacontainnineclassesofinterest. 

 
Salinas:The Salin as image was acquired via the Airborne Visible/Infrared 

ImagingSpectrometer(AVIRIS)overSalinasValley,California,andtheimagesizeis512X217,withthespatial

resolutionof3.7mItcontains224spectralbands.LiketheIndianPinesscene,the20waterabsorption bandswere 

discarded and there maining 204 bands were utilized for the experiments.Theground-

referencedatafortheSalinasimageentails16classes.Itincludesvegetables,baresoils,andvineyardfields. 
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Table1.2CSCNNPERFORMANCE WITHTEMITERATION 
 

 
Iteration 

 
Accuracy 

 
Precision 

 
Recall 

 
F1score 

 
TimeComplexity 

1 83.52 80.36 91.84 85.71 0.8351 

2 81.32 80.12 85.11 82.47 0.8131 

3 76.92 73.08 84.44 78.35 0.7692 

4 79.12 75.44 89.58 81.9 0.7912 

5 80.22 78.33 90.38 83.93 0.8021 

6 85.71 84.62 89.8 87.13 0.8571 

7 83.52 86.27 84.62 85.44 0.8351 

8 81.32 86.79 82.14 84.4 0.8131 

9 83.52 78.95 93.75 85.71 0.8351 

10 76.92 71.43 88.89 79.21 0.7692 

 

 

The above table shows the performance of the CSCNNsuch as accuracy, precision, recall and f1-scorewith time 

complexity. The overall accuracy of the CSCNN is upto 85.71%,,precision of the CSCNN 

is84.62%,RecalloftheCSCNNis 89.8%,f1-scoreis 87.13%andtimecomplexityis0.8571 milliseconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Theabovechartshowstheaccuracywisechart.Theaccuracyhasobtainedupto96%. 
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Theabovechartshowstheprecisionwisechart.Theprecisionhasobtainedupto90%. 
 

 

 

Table1.3CSCNNwithPCAfeatures 

 
Iteration 

 
Accuracy 

 
Precision 

 
Recall 

 
F1score 

 
TimeComplexity 

1 92.42 77.78 96.25 85.96 0.8341 

2 91.32 75.47 91.92 82.47 0.5248 

3 94.81 87.27 91.57 82.88 0.8562 

4 91.32 81.13 96 83.5 0.8041 

5 94.62 86.21 99.29 81.67 0.8641 

6 92.42 82.45 90.33 82.96 0.8421 

7 95.91 88.46 91.25 81.46 0.8196 

8 92.42 78.18 91.45 82.45 0.8412 

9 94.62 80 95.69 80.2 0.8259 

10 91.32 86.44 95 85.71 0.8031 

 
The above table shows the performance of the PCA CSCNN such as accuracy, precision, recall and f1-score 

with time complexity. The overall accuracy of the PCA CSCNN is upto 95.71%,,precision of thePCA CSCNN 

is 84.62%, Recall of the PCA CSCNN is 99.8%, f1-score is 87.13% and time complexityis0.8571milliseconds. 
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The above chart depicts the performance of the PCA CSCNN such as accuracy, precision, recall and f1-

scorewithtimecomplexity. 

CONCLUSION 

Classification and recognition of hyperspectral images are important content of hyperspectralimage 

processing. This paper discusses several methods of hyperspectral image classification, includingsupervised 

and unsupervised classification and semisupervised classification. Although the supervisedand unsupervised 

classification methods described in this article have their respective advantages tovarying degrees, there are 

limitations in the application of various methods. For example, 

supervisedclassificationrequiresacertainnumberofpriorconditions,andhumanfactorswillaffecttheclassification 

results have an impact. Therefore, based on different application requirements, combinedwith the acquisition of 

hyperspectral images with massive information, multiple methods need to becombined with each other in order 

to achieve the desired classification effect. With the development ofhyperspectralimage 

technology,hyperspectralimage classification hasbeenwidely 

used.Existingtheoriesandmethodsstillhavecertainlimitationsformorecomplicatedhyperspectralimageclassificatio

n.Therefore,researchingmoretargetedhyperspectralimageclassificationmethodswillbeanimportantresearchdirecti

oninthefuture. 
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